

Hydrogen for massive dissemination of renewable energy sources

A case study on Japan's Hydrogen strategy for 2050 Carbon Neutrality Goal

Masakazu SUGIYAMA

Research Center for Advanced Science and Technology, The University of Tokyo, Japan

Research Center for Advanced Science and Technology The University of Tokyo

Electricity management with massive PV

RE global

Renewable electricity installation in Japan

Suppression of PV power generation

For massive installation of renewable energy

©2021 Masakazu Sugiyama, RCAST, Univ. Tokyo, All rights reserved

RE global

A scenario for carbon neutrality

Non-electricity

Electricity

Carbon Removal

Renewable power generation in Japan

		Installed	Generation	Max. expectation in 2050 ^{*2}	
ant	Renewables	up to 2020 ^{*1} (GW)	in 2020 ^{*1} (TWh)	Capacity (GW)	Annual generation (TWh)
itte.	Photovoltaic	59.8	69.1	272.5	304.5
ern.	Wind	4.5	8.0	70.0	153.3
In	Hydro	21.4	73.0	31.3	30.5
ble-	Geothermal	0.1	0.5	79.2	49.6
stat	Biomass	4.0	18.1	7.4	43.1
Adit	Sum	89.8	168.8	460.4	676.2

^{*1} https://www.fit-portal.go.jp/PublicInfoSummary

*2 https://www.env.go.jp/earth/report/h27-01/

+ off-shore wind 30 – 45 GW (65 – 99 TWh)

cf.) Electricity demand in Japan: ca. 1100 TWh

Limitation in Japanese domestic RE (e.g. PV)

 Very aggressive PV installation is needed to meet the targeted renewable penetration.

Japanese government policy for the realization of H_2 society

H₂/FC strategy office, METI, Japan (2021)

Basic Hydrogen Strategy (METI, 2017)

Update of H₂ roadmap towards 2050 carbon neutral

- Expanded usage
 - FCV \rightarrow Power generation, variety of mobilities, industry
- Cost reduction
 - \20/Nm³, competitiveness against fossil fuel @2050
- Massive usage
 - 3 mil. Ton @2030, 20 mil. Ton @2050
 - CO₂-free H₂: over 420 kton (German renewable-H₂ target @2030)

20 mil. Ton H₂ @2050

- Power generation fueling by H_2 or NH_3 10% of 1300 – 1500 TWh → ca. 7 mil. Ton
- Commercial vehicles such as long-haul trucks
 6 mil. Ton
- steelmaking using hydrogen
 Under development, potentially 7 mil. Ton

Where to produce CO₂-free hydrogen

H₂ demand: 20 million ton/year

1000 TWh/year electricity

H₂ by water electrolysis using renewable electricity

In Japan

PV capacity ~900 GW (13% system utilization ratio)

In Australia

PV capacity ~600 GW (19% system utilization ratio)

Intercontinental hydrogen transport and usage

NH₃-coal mixed combustion

Mixing 20% NH_3 to coal-firing power generation Commercialization @2030

Increase in NH_3 mixing ratio, 100% NH_3 combustion (technology establishment in 2030 targetted)

Necessity for a novel NH₃ supply chain

1 unit of coal firing power generator, 20%-NH₃ mixed combustion \rightarrow 0.5 mil. ton NH₃

All the coal firing power generator in Japan, 20%-NH₃ mixed combustion \rightarrow 20 mil. ton NH₃

Equivalent to the worldwide NH₃ trade

Target by fuel-NH₃ consortium: 3 mil. ton @2030, 30 mil. Ton @2050

Exploring new CO_2 -free NH_3 production facilities Cost reduction (<\20/Nm³-H₂-equivalent)

Low-carbon hydrogen

